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Reducing noise in discretized time series
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We show that applying a noise-reduction algorithm to a discretized time series increases its average error,
compared to the original series. We find that adding external noise comparable to the discretization step before
noise reduction limits the increase of the average error and improves the estimation of Lyapunov exponents.
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I. INTRODUCTION

Time series analysis has been one of the most succe
areas of nonlinear science@1–4#. There have been conside
able advances in the areas of attractor reconstruction, n
reduction, model inference, control, synchronization, a
prediction. This paper addresses discretized time series,
arise from finite resolution in the measurement itself,
channel through which the measured signal is transmitted
the recording device. In a previous paper~Ref. @5#, Fig. 5!
we showed that the portion of a signal lost in a finit
resolution measurement is highly correlated, and appare
low dimensional, contrary to previous expectations@4# of an
uncorrelated, uniform distribution. This in principle shou
make noise reduction~also called cleaning or filtering! in
such series impossible.

In the present work we study a two-dimensional map a
controlled example@6#, and confirm our earlier conjectur
that the apparently cleaned data obtained from applyin
noise-reduction algorithm to discretized data, in fact h
higher average error, although it may look smoother to t
naked eye. This finding is relevant to discretized time se
from lasers@7,8#, population biology@9#, the social sciences
@10#, or the stock market, among others. We also find th
contrary to intuition, adding external noise with width com
parable to the discretization step to the discretized seriesbe-
fore cleaning, tends to reduce the increase in average e
and improves the estimation of Lyapunov exponents.

II. METHOD

In our work we have used a well-known dissipative sy
tem, the He´non map @6#, with the standard parametersa
51.4, b50.3. For this map the embedding dimension isdE
52 and the optimal time delay for reconstruction ist51
timestep. A zoom of a reconstruction of thex coordinate, i.e.,
an xn11 vs xn plot, is shown in Fig. 1 for comparison wit
noisy and cleaned versions of the same map. As in prev
work @5#, we have normalized thex variable between 0 and
1. We have chosen the simple, yet well-tested nonlin
cleaning algorithm introduced in Refs.@4,11#, which we will
describe below in more detail. This algorithm has be
implemented in the time series analysis programTISEAN

@12#, which we have used.
We discretize the normalized map by rounding up, i.e.,

defining a discretization stepdm522m and replacing eachx
value by the nearest higher integer multiple ofdm . The data
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of Fig. 1, discretized withm57 is shown in Fig. 2~a!. Part
~b! of the same figure shows the reconstruction of the d
cretized data, to which we have added uniform, rand
noise of widthd l;dm . We refer to these modifications o
the original data as the discretized~D! and smoothed~S!
series, respectively. The corresponding data sets are den
by dn andsn . Support for the choice of noise width comp
rable to the discretization step will be given below.

Next, we have applied the simple noise-reduction alg
rithm of Refs.@4,11# to the discretized and smoothed da
with 5<m<8, which correspond to noise widths betwe
0.4% and 3%. These are within the range of performanc
the simple algorithm, and have been combined with differ
widths of external noise.

The algorithm works as follows. One constructs vecto
with m5dE components, through standard phase-space
construction@3#. We denote these byxi . To clean each
m-dimensional vectorxi5(xi 2m21 , . . . ,xi) one identifies
vectors close toxi such that each component is within
neighborhood of radiusr of the corresponding component o
the vector to be cleaned. After this, one calculates
cleaned value ofxi 1m/2 , the central component of the vecto
by averaging over the central component of the close v
tors, with the hope that the noise has expectation value
zero, and will approximately cancel out. In the worst case
xi has no neighbors, the cleaned value will be the unchan
value of the central component ofxi .

The algorithm has several parameters: one is the em
ding dimensiondE , already mentioned. WhiledE for the
Hénon map is 2, Refs.@4,11# recommend a higher numbe

FIG. 1. Enlargement of the original He´non map in time-delayed
x coordinates, normalized between 0 and 1. We show the re
0.6<xn<0.8 and 0.7<xn11<0.8 in dimensionless units.
©2001 The American Physical Society11-1
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~they use 7!. We use 5, which we found to be slightly mo
convenient @13#. Another parameter is the radius of th
neighborhood,r, that defines close points or trajectories. T
same references suggest about three times the noise a
tude. We have swept radius values between 1 andm times
the noise width. Finally, the algorithm can be iterated s
cessively, i.e., a cleaned set of points can be used as
starting point for a new cleaning. The same references s
gest 2–6 iterations. We have monitored several iteratio
and show the fourth in what follows.

III. RESULTS

We show typical results, that refer to the original,D, and
S series shown in the previous two figures. We denote
noise-reduced points of theD and S series withdn

r and sn
r ,

respectively. Figure 3 shows~a! the cleaned result of theD
series with a neighborhood radiusr 52d, and~b! the cleaned
result of theS series, with the same radius. In both cas
there is an apparent sharpening of lines in the attractor, w
in the latter case there appears to be more similarity with
original signal~Fig. 1! than in the former case. To make th
comparison more quantitative, consider an altered se
n1 ,n2 , . . . ,nN and the original, noise-free signa
x1 ,x2 , . . . ,xN , both consisting ofN points. We define the
average percentage error as

e5
100

N (
i 51

N

uni2xi u. ~1!

We calculatede for the D and S series before and afte
noise reduction, using the original He´non series as the noise
free signal. A representative case of these results is show
Fig. 4 for m56. While the error plots for other values ofm
are qualitatively similar, we have used the casem56 be-

FIG. 2. ~a! Zoom of the He´non map, with discretizationm57
~steps of 1/128 of the variable range!. ~b! Zoom of the He´non map,
with discretizationm57 plus external noise of the same width. W
show the same region as the previous figure.

FIG. 3. Same data as Fig. 2, after noise reduction withr 52d
and four iterations of the algorithm.
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cause it is the clearest. This figure shows the average ere
of theD andSseries with noise of widthd l5dm ~lower and
higher horizontal lines, respectively!, the cleanedD series,
and the cleanedS-data generated with several noise widt
(dm/2, dm , and 2dm .! We interpret this figure as follows.~1!
The noise level of theS series is higher than that of theD
series, although one might expect that adding a signal w
expected value of zero should not changee. In fact, eS
; 13

12 eD , in agreement with a simple calculation@14#. ~2! The
cleanedD series shows a higher error level than theD series,
although one might expect otherwise from visual inspect
of the noise-reduced data. Our results, however, are con
tent with previous findings@5# that the portion of a signal los
under discretization is low dimensional, and essentially
recoverable. A cleaning algorithm should not be able to i
prove the quality of the signal, and we find that indeed
does not.~3! Over a large range of neighborhood radii, 2d
<r<7d, we observe that the cleaning algorithm lowers t
error of theSseries, without ever reaching the lower limit o
the D series. This suggests that the smoothing effect of
additional noise improves the averaging effects of the cle
ing algorithm. Again, we stress that the results are similar
all values ofm between 5 and 8.

In addition, we have explored the effects of noise smoo
ing and noise reduction on the calculation of dynamical
variants. Adding noise to the discretized series allows
exploration of smaller scales in the lnN(e) vs ln(1/e) estima-
tion of the capacity dimension. However, due to the rando
ness of the added~uniform or Gaussian! noise, no additional
information about the small-scale structure of the attracto
expected. This argument applies to the generalized dim
sionsDq .

In Table I we show the estimation of the largest Lyapun
exponent using the discretized He´non series~column 4! and
the same data smoothed with uniform noise of the sa
width ~column 5!, for two levels of discretization~column 2!
and several radii of the noise-reduction algorithm~column
3.! The results of the last two columns should be compa
with those of the original map~column 1.! Just adding noise
brings the Lyapunov exponent from a factor of about 30
to just a factor of 5 off~rows with a dash in column 3.! This
improvement can be understood by looking at part~a! of

FIG. 4. Average percentage errore vs neighborhood radiusr for
the Hénon map, with discretizationm56. Units are dimensionless
Symbols in the figure refer to the following series:3 for S with
added noise of width 0.8 % and1 for D, both before cleaning.h,
s, andL for S with noise widths of 1.5%, 0.8%, and 0.4%, re
spectively:D after noise reduction.
1-2
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Figs. 2 and 3: in the first, two nearby points that app
identical under discretization can be mapped to points on
several discretization steps away, resulting in serious ove
timation of Lyapunov exponents. It seems that just add
noise reduces this effect, as the second figure shows.
improvement in the Lyapunov exponent obtained from no
reduction of the discretized series seems to tend asymp
cally to that obtained just by noise smoothing, strongly s
gesting that the improvements in column 4 are just due

TABLE I. Original Lyapunov exponent, discretization level, r
dius of noise-reduction algorithm~‘‘-’’ indicates no reduction, and
integer indicates multiple of discretization level!, and estimation of
Lyapunov exponent after noise reduction for discretized series~D!
and series smoothed with uniform noise comparable to the disc
zation step (S).

l1 m r lD1 lS1

0.42 6 16.0603 1.9703
1 15.9955 2.4302
2 5.7284 2.3613
3 4.0996 2.3236
4 2.8981 2.3116
5 2.8575 2.2991

0.42 7 12.1003 2.0431
1 11.5739 2.1392
2 3.1412 2.1830
3 2.6110 2.1680
4 2.4811 2.1947
5 2.3091 2.2082
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smoothing of the data, and not to actual recovery of inf
mation about the original signal. These results are consis
with @5#, in the sense that the original value of the Lyapun
exponent is never recovered.

Before moving on to a practical example, we discuss w
noise width d l comparable to the discretization leveldm
seems to work best. We have found that usingd l@dm alters
the apparent dynamics of the system, resulting in spuri
crossings of the stable and unstable manifolds of the dyna
cal system. We see this disturbing effect, in which the no
in effect drowns the signal, even withd l54dm . On the other
hand, ifdm@d l , an effect which is just noticeable in Fig.
becomes far more serious: the smoothed series remains
fined to a grid defined by the discretization step itself,
spurious structure that for smalld l survives noise reduction
More details are given in@13#. Because of these results, w
recommend smoothing withd l;dm .

IV. A PRATICAL EXAMPLE

We have extended our study to the more realistic cas
the time series of the power output of an NH3 laser@4,7,8#.
We used 9896 points from this series, which was measu
with eight-bit precision, or discretizationm58. We have
added noise with widths betweenm56 andm510 to gen-
erate the correspondingS series. In this case, the origina
series is not available, and we only have qualitative tools
compare the results. Figure 5 shows reconstructed traje
ries for D andS series before and after noise reduction w
r 52d. We will focus the description in the denser region
the reconstructions, corresponding to values in the inte
@20,80#. The protocol used is the same that we have u

ti-
FIG. 5. Laser data in time-delayed coordinates, 20< l n ,l n11<140. ~a! Zoom of the original, eight-bit data.~b! Zoom of smoothed data
with uniform noise of the same width.~c! and~d!, Same data as in parts~a! and~b!, after noise reduction usingr 52d and four iterations.
1-3
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before, witht51 timestep anddE52.
The lower left corner of Fig. 5~a! shows a lower density

of points than the equivalent region of Fig. 5~b!, because the
uniform noise inSspreads the points that coincide in a sing
value inD; with this, the discretized structure disappears
S. Figures 5~c! and~d!, show that the discretized structure
the D series survives the noise reduction, but greatly dim
ished. Moreover, regions with high density of points can
seen throughout the phase space of the cleanedS series that
do not appear in the phase space of the cleanedD series.
While we have chosen parameter values that yield good
sults, in all fairness we must say that the best noise reduc
we have seen@4# of this particular data set gets rid of the gr
structure inD, but does not show as many high-density
gions of points as we do.

V. CONCLUSIONS

To summarize, in this paper we corroborate the conjec
stated in Ref.@5#, that discretization of a time series caus
an unrecoverable information loss. Indeed, we have not s
a single instance of noise reduction of a discretized se
that has lower average error than the discretized signal it
despite an apparent sharpening of the reconstructed m
The apparent improvement on Lyapunov exponent esti
h.
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tion shown in Table I is no better than the addition of
random signal. We expect these results to hold for ot
noise-reduction algorithms as well.

We also find that adding uniform noise to a discretiz
series previous to the application of a standard no
reduction algorithm minimizes the increase in average er
it appears that the noise spreads the points concentrate
discrete intervals, and helps the averaging action of
cleaning algorithm. We show an example of this in Fig.
This spreading also helps improve the estimation
Lyapunov exponents, but not of generalized dimensions.
ter reporting the effects of adding noise levels much sma
or much greater than the discretization step, we recomm
adding uniform noise of width comparable to the discretiz
tion step itself for good results. A final point is that this wo
provides an example of how noise makes it difficult to inf
the model equation in a chaotic system@15#, since in this
case part of the original deterministic signal, and hence
formation about the governing equation, is lost during t
measurement process.
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