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Reducing noise in discretized time series
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We show that applying a noise-reduction algorithm to a discretized time series increases its average error,
compared to the original series. We find that adding external noise comparable to the discretization step before
noise reduction limits the increase of the average error and improves the estimation of Lyapunov exponents.
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I. INTRODUCTION of Fig. 1, discretized witm=7 is shown in Fig. 2a). Part
(b) of the same figure shows the reconstruction of the dis-
Time series analysis has been one of the most successfuletized data, to which we have added uniform, random
areas of nonlinear scien¢&—4]. There have been consider- noise of widthd,~ 6,,. We refer to these modifications of
able advances in the areas of attractor reconstruction, noigee original data as the discretizé®) and smoothedS
reduction, model inference, control, synchronization, andseries, respectively. The corresponding data sets are denoted
prediction. This paper addresses discretized time series, thay d, ands,,. Support for the choice of noise width compa-
arise from finite resolution in the measurement itself, therable to the discretization step will be given below.
channel through which the measured signal is transmitted, or Next, we have applied the simple noise-reduction algo-
the recording device. In a previous pag®ef. [5], Fig. 5  rithm of Refs.[4,11] to the discretized and smoothed data,
we showed that the portion of a signal lost in a finite-with 5=m=8, which correspond to noise widths between
resolution measurement is highly correlated, and apparentl9.4% and 3%. These are within the range of performance of
low dimensional, contrary to previous expectatipdbof an  the simple algorithm, and have been combined with different
uncorrelated, uniform distribution. This in principle should widths of external noise.
make noise reductioffalso called cleaning or filteringin The algorithm works as follows. One constructs vectors
such series impossible. with m=dg components, through standard phase-space re-
In the present work we study a two-dimensional map as &onstruction[3]. We denote these by,. To clean each
controlled examplg6], and confirm our earlier conjecture m-dimensional vectorx;=(Xj_m_1, - -.,X;) one identifies
that the apparently cleaned data obtained from applying &ectors close tax; such that each component is within a
noise-reduction algorithm to discretized data, in fact haseighborhood of radius of the corresponding component of
higher average error, although it may look smoother to thethe vector to be cleaned. After this, one calculates the
naked eye. This finding is relevant to discretized time seriegleaned value of; , ,,», the central component of the vector,
from laserd7,8], population biology[9], the social sciences by averaging over the central component of the close vec-
[10], or the stock market, among others. We also find thattors, with the hope that the noise has expectation value of
contrary to intuition, adding external noise with width com- zero, and will approximately cancel out. In the worst case, if
parable to the discretization step to the discretized sbéges x; has no neighbors, the cleaned value will be the unchanged
fore cleaning, tends to reduce the increase in average err@alue of the central component gf.

and improves the estimation of Lyapunov exponents. The algorithm has several parameters: one is the embed-
ding dimensiondg, already mentioned. Whilelg for the
Il. METHOD Henon map is 2, Refd.4,11] recommend a higher number
In our work we have used a well-known dissipative sys- \’*\,
tem, the Haon map[6], with the standard parametess RN
=1.4, b=0.3. For this map the embedding dimensionljs \%;\
=2 and the optimal time delay for reconstruction7is 1 C "\’%‘
timestep. A zoom of a reconstruction of tkeoordinate, i.e., X [ RN '%ﬁ\
anx, .1 VS X, plot, is shown in Fig. 1 for comparison with n+l) "-.._},,_\ Py,
noisy and cleaned versions of the same map. As in previous "'Z':\ N By
work [5], we have normalized the variable between 0 and ~UN RN
1. We have chosen the simple, yet well-tested nonlinear ‘“ \gk *'*'a._ R
cleaning algorithm introduced in Refgl,11], which we will T \-s._,
describe below in more detail. This algorithm has been S =
implemented in the time series analysis prograseAN X

[12], which we have used.

We discretize the normalized map by rounding up, i.e., by FIG. 1. Enlargement of the original Hen map in time-delayed
defining a discretization stefy,=2~ ™ and replacing eack  x coordinates, normalized between 0 and 1. We show the region
value by the nearest higher integer multipledyf. The data 0.6<x,<0.8 and 0.%Xx,,,=0.8 in dimensionless units.
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FIG. 2. (a) Zoom of the Haon map, with discretizatiom=7 0.75 1 -

(steps of 1/128 of the variable rangéo) Zoom of the Haon map, 0.014 r 0.095
with discretizationrm=7 plus external noise of the same width. We

show the same region as the previous figure. FIG. 4. Average percentage ermvs neighborhood radiusfor

the Henon map, with discretizatiom=6. Units are dimensionless.

. . Symbols in the figure refer to the following series: for S with
(they use J. We use 5, which we found to be slightly more added noise of width 0.8 % and for D, both before cleanind,

convenlent[13]. Anothgr parameter. is the r?dlus_ of the O, and ¢ for Swith noise widths of 1.5%, 0.8%, and 0.4%, re-
neighborhoodr, that defines close points or trajectories. TheﬁFectively'D after noise reduction

same references suggest about three times the noise amp
tude. We have swept radius values between lrartines cause it is the clearest. This figure shows the average error
the noise width. Finally, the algorithm can be iterated sucof the D andS series with noise of widtl$,= &, (lower and
cessively, i.e., a cleaned set of points can be used as thfgher horizontal lines, respectivglythe cleaned series,
starting point for a new cleaning. The same references sugmnd the cleane&-data generated with several noise widths
gest 2-6 iterations. We have monitored several iterationg,s,/2, 8,,, and 25,,.) We interpret this figure as follows1)

and show the fourth in what follows. The noise level of thes series is higher than that of tH2
series, although one might expect that adding a signal with
ll. RESULTS expected value of zero should not changeln fact, eg

. . ~2ep, in agreement with a simple calculatifi¥]. (2) The

W(_a show typlpal results, _that refer _to the origingl, and clean'édD se?ies shows a higher F(;rror level than Eheeries,
S series shown in the previous two figures. V\{e den(r)te S ithough one might expect otherwise from visual inspection
noise-reduced points of thg and S series withd, ands,, o the noise-reduced data. Our results, however, are consis-
respectively. Figure 3 shows) the cleaned result of thB  tent with previous finding5] that the portion of a signal lost
series with a neighborhood radius 25, and(b) the cleaned  nder discretization is low dimensional, and essentially not
result of theS series, with the same radius. In both case§ecoverable. A cleaning algorithm should not be able to im-
there is an apparent sharpening of lines in the attractor, Whl|§rove the quality of the signal, and we find that indeed it
in the latter case there appears to be more similarity with thgjyeg not.(3) Over a large range of neighborhood radi 2
original signal(Fig. 1) than in the former case. To make the < <75 we observe that the cleaning algorithm lowers the
comparison more quantitative, consider an altered seriegy oy of theS series, without ever reaching the lower limit of

Ny,Nz,....ny and the original, noise-free signal, the p series. This suggests that the smoothing effect of the
X1,Xz, ... Xy, both consisting oN points. We define the  aqgitional noise improves the averaging effects of the clean-
average percentage error as ing algorithm. Again, we stress that the results are similar for
N all values ofm between 5 and 8.
o 100 S ni— 1 In addition, we have explored the effects of noise smooth-
= . i Xi| . ( ) . . . . . .
N =1 ing and noise reduction on the calculation of dynamical in-

variants. Adding noise to the discretized series allows the
We calculatede for the D and S series before and after exploration of smaller scales in theMge) vs In(1/) estima-
noise reduction, using the original kien series as the noise- tion of the capacity dimension. However, due to the random-
free signal. A representative case of these results is shown imess of the adde@iniform or Gaussiannoise, no additional
Fig. 4 form=6. While the error plots for other values of  information about the small-scale structure of the attractor is
are qualitatively similar, we have used the case6 be- expected. This argument applies to the generalized dimen-
sionsDy,.
(a) (b)[ In Table | we show the estimation of the largest Lyapunov
exponent using the discretized i seriegcolumn 4 and
the same data smoothed with uniform noise of the same
width (column 5, for two levels of discretizatiofcolumn 2
and several radii of the noise-reduction algoritlioolumn
3.) The results of the last two columns should be compared
d S with those of the original magcolumn 1) Just adding noise
brings the Lyapunov exponent from a factor of about 30 off
FIG. 3. Same data as Fig. 2, after noise reduction wi25  to just a factor of 5 offrows with a dash in column BThis
and four iterations of the algorithm. improvement can be understood by looking at pajt of
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TABLE I. Original Lyapunov exponent, discretization level, ra- smoothing of the data, and not to actual recovery of infor-
dius of noise-reduction algorithitY-” indicates no reduction, and  mation about the original signal. These results are consistent
integer indicates multiple of discretization leyeind estimation of  wjith [5], in the sense that the original value of the Lyapunov
Lyapunov exponent after noise reduction for discretized sébgs exponent is never recovered.
and series smoothed with uniform noise comparable to the discreti- Before moving on to a practical example, we discuss why

zation step §). noise width 8, comparable to the discretization levé},
seems to work best. We have found that uség 6, alters
A m ' o1 st the apparent dynamics of the system, resulting in spurious
0.42 6 16.0603 1.9703 crossings of the stable and unstable manifolds of the dynami-
1 15.9955 2 4302 cal system. We see this disturbing effect, in which the noise
2 57284 23613 in effect drowns the signal, even with=44,,. On the other
3 4.0996 23236 hand, if 5,> 6, an effect which is just noticeable in Fig. 2
4 2.8981 23116 becomes far more serious: the smoothed series remains con-
5 2 8575 22991 fined to a grid defined by the discretization step itself, a
spurious structure that for smai] survives noise reduction.
0.42 7 12.1003 2.0431 More details are given ifl3]. Because of these results, we
1 11.5739 2.1392 recommend smoothing with ~ &, .
2 3.1412 2.1830
s 26110 2.1680 IV. A PRATICAL EXAMPLE
4 2.4811 2.1947
5 2.3091 2.2082 We have extended our study to the more realistic case of

the time series of the power output of an Niser[4,7,8).

We used 9896 points from this series, which was measured
Figs. 2 and 3: in the first, two nearby points that appeawith eight-bit precision, or discretizatiom=8. We have
identical under discretization can be mapped to points one axdded noise with widths between=6 andm=10 to gen-
several discretization steps away, resulting in serious overegrate the corresponding series. In this case, the original
timation of Lyapunov exponents. It seems that just addingeries is not available, and we only have qualitative tools to
noise reduces this effect, as the second figure shows. Thempare the results. Figure 5 shows reconstructed trajecto-
improvement in the Lyapunov exponent obtained from noiseies for D and S series before and after noise reduction with
reduction of the discretized series seems to tend asymptoti=24. We will focus the description in the denser region of
cally to that obtained just by noise smoothing, strongly sugthe reconstructions, corresponding to values in the interval
gesting that the improvements in column 4 are just due t¢20,80. The protocol used is the same that we have used
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FIG. 5. Laser data in time-delayed coordinatess<2Q,1,,,,=<140.(a) Zoom of the original, eight-bit datdb) Zoom of smoothed data
with uniform noise of the same widtlic) and(d), Same data as in parta) and (b), after noise reduction using=24 and four iterations.
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before, with7=1 timestep andiz=2. tion shown in Table | is no better than the addition of a
The lower left corner of Fig. @) shows a lower density random signal. We expect these results to hold for other
of points than the equivalent region of Fighh because the noise-reduction algorithms as well.
uniform noise inSspreads the points that coincide in a single  We also find that adding uniform noise to a discretized
value inD; with this, the discretized structure disappears inseries previous to the application of a standard noise-
S Figures %c) and(d), show that the discretized structure in reduction algorithm minimizes the increase in average error;
the D series survives the noise reduction, but greatly dimin-t appears that the noise spreads the points concentrated at
ished. Moreover, regions with high density of points can bediscrete intervals, and helps the averaging action of the
seen throughout the phase space of the cle@wmaties that cleaning algorithm. We show an example of this in Fig. 4.
do not appear in the phase space of the cledDeskries. This spreading also helps improve the estimation of
While we have chosen parameter values that yield good rd-yapunov exponents, but not of generalized dimensions. Af-
sults, in all fairness we must say that the best noise reductioter reporting the effects of adding noise levels much smaller
we have seef¥] of this particular data set gets rid of the grid or much greater than the discretization step, we recommend
structure inD, but does not show as many high-density re-adding uniform noise of width comparable to the discretiza-

gions of points as we do. tion step itself for good results. A final point is that this work
provides an example of how noise makes it difficult to infer
V. CONCLUSIONS the model equation in a chaotic systgd®b], since in this

case part of the original deterministic signal, and hence in-

To summarize, in this paper we corroborate the conjecturgyrmation about the governing equation, is lost during the
stated in Ref[5], that discretization of a time series causesmeasurement process.

an unrecoverable information loss. Indeed, we have not seen

a single instance of noise reduction of a discretized series ACKNOWLEDGMENTS
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